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Abstract—Temporal subgraph mining is recently ubiquitous. Identifying diversified and lasting ingredients is a fundamental problem in

analyzing temporal networks. In this paper, we investigate the problem of finding diversified lasting cohesive subgraphs from temporal

networks. Specifically, we first introduce a new model, called maximal lasting ðk; sÞ-core, for characterizing lasting cohesive subgraphs

on temporal networks so as to the nodes in the subgraph are connected densely and also the subgraph’s structure remains unchanged

for a period of time. To enhance the diversity of results, we then formulate a diversified lasting cohesive subgraphs problem, which finds

rmaximal lasting ðk; sÞ-cores with maximum coverage regarding the number of vertices and timestamps. Unfortunately, we show that

the optimization problem is NP-hard. To tackle this issue, we first devise a greedy algorithm namedGreLC with (1-1/e) approximation

ratio. However, GreLC has prohibitively high time and space complexity, resulting in poor scalability. Then, an improved DFS-based

search algorithm called TopLC with 1/4 approximation ratio is proposed to lower the computational cost. Finally, empirical studies on six

real-world temporal networks demonstrate that the proposed solutions perform efficiently and accurately, and our model is better than

temporal cohesive subgraphs detected by existing approaches.

Index Terms—Cohesive subgraphs, temporal networks, lasting pattern mining, diversified top-r search

Ç

1 INTRODUCTION

TEMPORAL networks have received attention in a wide spec-
trum of scenarios ranging from brain networks and com-

munication networks to bibliographic networks and social
networks [1], [2], [3]. In these networks, each edge is a triple
ðv1; v2; tÞ that indicates the two parties v1 and v2 have an inter-
action at time t. Analyzing the temporal nature of these net-
works can provide high-level insights about their structure
and evolution. For example, it can reveal the time-respecting
path or reachability [4], [5], periodicity of a cohesive subgraph
[6], the timeline of events [7] and time constrainedmotifs [8].

Although temporal networks are constantly evolving,
some cohesive structures may be unchanged for a period of
time, that is lasting cohesive subgraphs, suggesting themicro-
scopic invariable structural feature. For instance, in dynamic
protein-protein interaction networks [9], each vertex repre-
sents a protein and each edge reflects the time when the two
proteins interact. A lasting cohesive subgraph is a group of
densely connected proteins and the connection lasts for a
period time. Such a subgraph may be able to predict which
protein complexes are more prone to mutations. Another
concrete example is scientific collaboration networks [10], in

which an edge indicates the time when the two authors co-
author a paper. A lasting cohesive subgraph can be regarded
as a stable research team that lastly worked together for a
period of time, which can provide evidence why the team has
changed, for example, due to some members graduated from
the team.

Surprisingly, detecting lasting cohesive subgraphs is
meaningful and enjoys many applications, but this issue
has not been adequately studied in literature. As stated in
Section 6, the existing approaches on detecting static cohe-
sive subgraphs [11] only considered the structural cohe-
siveness but the temporal feature of a subgraph. Until very
recently, some studies tried to identify temporal cohesive
subgraphs [6], [7], [10], [12], [13], [14]. For example, Wu
et al. [13] investigated core-decomposition on temporal net-
works, which can be used to visualize temporal networks.
Ma et al. [12] investigated heavy temporal subgraphs prob-
lem to analyze road traffic conditions. Rozenshtein et al. [7]
studied the timeline of events on temporal networks. Li
et al. [10] developed an effective branch and bound algo-
rithm to detect maximumpersistent communities in tempo-
ral networks. Qin et al. [6] introduced the concept of
periodic clique to capture and predict periodicity of cohe-
sive subgraphs. Chu et al. [14] modeled the density bursting
subgraph as a temporal subgraph that aggregates its cohe-
siveness at the fastest speed during the corresponding time
interval. Unfortunately, since the interlink structures con-
stituted by the returned node set may be different from one
timestamp to another, the existing approaches fail to con-
sider the lasting of a subgraph. Moreover, they proposed
techniques also cannot be straightforwardly applied to
identify lasting cohesive subgraphs.

Here, we study an important problem of identifying
diversified lasting cohesive subgraphs from a temporal net-
work. Specifically, we propose a novel lasting cohesive
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subgraph model, named maximal lasting ðk; sÞ-core, based
on the well-known k-core [15] (k-core is a subgraph such
that each node has at least k neighbors within the sub-
graph). For a temporal network G, a maximal lasting
ðk; sÞ-core consists of a static graphGS and a time interval I
whose length is no less than s, in which GS is a k-core and
keeps unchange during I in G. Clearly, the maximal lasting
ðk; sÞ-core is a natural fusion of the cohesiveness and the
time duration (lasting). Unfortunately, the number of maxi-
mal lasting ðk; sÞ-cores may be exponentially large in the
worst case (see Section 2.2 for details). Thus, enumerating
all maximal lasting ðk; sÞ-cores is expensive and meaning-
less. So, we resort to research diversified top-r searching
due to the importance and usefulness of diversification (see
Section 6). In particular, we aim to find r maximal lasting
ðk; sÞ-cores, saying diversified top-r lasting ðk; sÞ-cores,
with maximum coverage regarding the number of vertices
and timestamps. These maximal lasting ðk; sÞ-cores are dis-
tinctive and informative. In a nutshell, our main contribu-
tions are summarized as follows:

An Elegant Cohesive Subgraph Model in Temporal Graphs.We
propose a novel temporal model, called diversified top-r last-
ing ðk; sÞ-cores, to capture both the diversification and the
time duration of cohesive subgraphs on temporal networks.
We demonstrate that the problem of identifying diversified
top-r lasting ðk; sÞ-cores can essentially be reduced to the
maximum r-coverage. Thereby, our problem is NP-hard due
to themaximum r-coverage isNP-hard [16].

Two Efficient Algorithms With Approximate Guarantees. To
detect diversified top-r lasting ðk; sÞ-cores on a temporal
network, we devise a greedy algorithm named GreLC with
ð1� 1=eÞ approximation ratio, which first enumerates all
maximal lasting ðk; sÞ-cores as candidate results and then
adopts a greedy manner to obtain the final results. How-
ever, its time and space complexity are prohibitively high,
resulting in poor scalability. To reduce the complexity of
GreLC, we further devise an improved DFS-based search
algorithm called TopLC with 1=4 approximation ratio,
which interweaves simultaneously candidate results and
pruning techniques. Namely, TopLC maintains dynami-
cally at most r candidate lasting ðk; sÞ-cores and the candi-
dates are updated when a new lasting ðk; sÞ-core is
generated. Meanwhile, the candidates can be applied to
facilitate the pruning process, resulting in that some prun-
ing techniques are guided by the candidates.

Several Experimental Evaluations on Real-World Datasets.
We conduct extensive experiments on six real-world tem-
poral networks for evaluating the proposed solutions.
These results illustrate that our best algorithm is 1-3
orders of magnitude faster than the baseline with most
parameter settings on all datasets. For instance, on a tem-
poral network contains over million vertices and edges,

the best algorithm takes about 6 seconds to find diversi-
fied top-r lasting ðk; sÞ-cores with most parameter set-
tings. The baseline, however, cannot get the results
within one hour. Meanwhile, the experiments also dem-
onstrate that the practical diversified quality of TopLC is
comparable to GreLC. In addition, by comparing with
four state-of-the-art baseline models, we find that our
model can indeed detect more fascinating lasting pat-
terns that cannot be found by the baselines. For reproduc-
ibility purpose, the source code of our paper can be
accessed at https://github.com/Lin021/DLCP.

2 DIVERSIFIED LASTING COHESIVE SUBGRAPHS

2.1 Preliminaries

Here, we focus on an undirected and unweighted temporal
graph GðV; E; T Þwithout self-loops, in which V and E repre-
sent the node (vertex) set and the temporal edge set respec-
tively. Each temporal edge is a triple ðu; v; tÞ 2 E indicating
that u and v have an interaction at timestamp t. More than
an interaction may occur between u and v. Namely, two
temporal edges ðu; v; t1Þ and ðu; v; t2Þ are different if t1 6¼ t2.
We let n ¼ jV j (resp. m ¼ jEj) be the number of vertices
(resp. temporal edges). T ¼ ftjðu; v; tÞ 2 Eg is the time
domain of G. For convenience, we assume that t is an inte-
ger, because in real-world scenarios the timestamp is nor-
mally an integer. A time interval I ¼ ½tb; te� � T is a set of
continuous timestamps and let jIj ¼ te � tb þ 1 (resp. jT j)
be the number of timestamps of I (resp. T ).

Let GðV; EÞ be the de-temporal graph of G, in which E ¼
fðu; vÞj9ðu; v; tÞ 2 Eg and �m ¼ jEj. That is G is a static graph
that removes the time attribute of G. Let NGðvÞ ¼ fujðu; vÞ 2
Eg be the neighbors of v in G and dGðvÞ ¼ jNGðvÞj be the
degree of v in G. A graph GS ¼ ðS; ESÞ is a subgraph of G,
denoted by GS � G, if S � V and ES � E. Let GSðS; ES; T SÞ
be a temporal subgraph of G induced by S, in which S � V ,
ES ¼ fðu; v; tÞ 2 Eju; v 2 Sg and T S ¼ ftjðu; v; tÞ 2 ESg. For
any timestamp t 2 T , we let Gt ¼ ðVt; EtÞ be the snapshot of
G at timestamp t such that Et ¼ fðu; vÞjðu; v; tÞ 2 Eg is an
edge set existing at timestamp t and Vt is the end vertices of
Et. Fig. 1a shows a temporal graph Gwith 6 vertices, 38 tem-
poral edges and T ¼ f1; 2; 3; 4; 5g. Figs. 1b and 1c indicate
the de-temporal graph G and all snapshots of G respec-
tively. We give the following two definitions for the conve-
nience of modeling lasting cohesive subgraph later.

Definition 1 (Time Support Set). The time support set of a
subgraph GS in a temporal graph G is defined by SupðGSÞ ¼
ftjGS � Gtg.

Definition 2 (s-Lasting Support Set). Given a positive inte-
ger s, a s-lasting support set of GS , denoted by lsðGSÞ �
SupðGSÞ, is a time interval such that jlsðGSÞj � s.

Fig. 1. De-temporal graph, snapshots, and diversified top-r lasting ðk; sÞ-cores of an example temporal graph.
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By Definition 2, s-lasting support set describe the time
duration of a subgraph in a temporal graph.

2.2 Problem Definition

One representative cohesive subgraph model is k-core
[15], which has been widely applied in community
search, user engagement and influence evaluation [17],
[18], [19]. Based on this, we define an elegant temporal
cohesive subgraph model by integrating the time dura-
tion into the k-core.

Definition 3 (k-Core [15]). For static graph G and positive
integer k, the k-core GC ¼ ðC;ECÞ is a subgraph of G such
that dGC

ðuÞ � k for any u 2 C, and GC is maximal k-core if
there is no other k-core containing GC .

Definition 4 (Lasting (k; s)-Core). For temporal graph G and
positive integer k and s, a lasting (k; s)-core R ¼ (GS , I),
satisfying

i) Structural cohesiveness: GS is a k-core;
ii) Time duration: I is a s-lasting support set of GS ;

Definition 5 (Maximal Lasting (k; s)-Core). A lasting
(k; s)-core (GS , I) is maximal if there is no other lasting
(k; s)-core ðGS0 ; I

0Þ satisfying GS � GS0 and I � I 0.

Parameter k depicts the structural cohesiveness of sub-
graph GS and s controls the time duration of GS . Concep-
tually, the maximal lasting ðk; sÞ-core is different from
k-core, since it enables better analysis of the lasting pat-
tern by incorporating the time duration into k-core.
Namely, it can capture lasting cohesive subgraphs from
the evolving process of temporal graphs very well. Mean-
while, the maximal lasting ðk; sÞ-core has the following
superiorities: (1) the maximal lasting ðk; sÞ-core has sev-
eral elegant properties to facilitate the algorithm design
of the following problem discussed in Section 2.3 ; (2) It
or they can be obtained in linear time when the time
interval is fixed; (3) the maximal lasting ðk; sÞ-core help
effectively identify some fascinating temporal patterns as
illustrated in our experiments.

Example 1. Consider temporal graph G in Fig. 1a. Let k ¼
2 and s ¼ 3, subgraph GS ¼ fða; bÞ; ðb; cÞ; ðc; aÞg is a 2-
core and its time support set is f1; 2; 3g. Thus, time
interval [1,3] is a 3-lasting support set of GS . Moreover,
there does not exist another lasting (k; s)-core ðGS0 ; I

0Þ
such that GS � GS0 and ½1; 3� � I 0. Consequently, pair
ðGS; ½1; 3�Þ is a maximal lasting (2,3)-core of G. In a simi-
lar way, we can derive that ðfðd; cÞ; ðd; eÞ; ðc; eÞg; ½2; 4�Þ
and ðfðc; eÞ; ðe; fÞ; ðf; dÞ; ðd; cÞg; ½3; 5�Þ are also maximal
lasting (2,3)-cores of G.

Let LCk
sðGÞ be the set of maximal lasting (k; s)-cores of

G. Lasting (k; s)-cores in LCk
sðGÞ may overlap (e.g., in

Example 1, ðfðd; cÞ; ðd; eÞ; ðc; eÞg; ½2; 4�Þ and ðfðc; eÞ; ðe; fÞ;
ðf; dÞ; ðd; cÞg; ½3; 5�Þ). As a result, the number of maximal
lasting (k; s)-cores may be exponentially large in the
worse case. Thus, enumerating all maximal lasting
ðk; sÞ-cores is expensive and meaningless. An interesting
and meaningful problem is to output diversified top-r
lasting (k; s)-cores due to its practicality in real-world
applications [7], [20]. Intuitively, the number of vertices

and timestamps are two pivotal factors in characterizing
the diversity of the resulting lasting (k; s)-cores. So, we
borrow diversified measurement in [20] and define the
coverage of maximal lasting ðk; sÞ-cores as follows:

Definition 6 (Coverage). For a set of maximal lasting ðk; sÞ-
cores R ¼ fðGS1 ; I1Þ; ðGS2 ; I2Þ; . . . ; g � LCk

sðGÞ in temporal
graph G, the coverage of R is denoted by covðRÞ ¼ [ðGSi

;IiÞ2R
fðv; tÞjv 2 Si; t 2 Iig.

Based on Definition 5 and 6, we formally define diversi-
fied top-r lasting ðk; sÞ-cores as follows:

Definition 7 (Diversified Top-r Lasting ðk; sÞ-Cores).
For temporal graph G and parameter k, s and r, the diversified
top-r lasting ðk; sÞ-cores of G is denoted by R ¼ fðGS1 ; I1Þ;
ðGS2 ; I2Þ; . . . ; g � LCk

sðGÞ such that (i) jRj � r; (ii) jcovðRÞj
is maximum.

Example 2. Reconsider temporal graph G in Fig. 1a. Let r ¼ 2,
k ¼ 2 and s ¼ 3, there are three maximal lasting (2,3)-cores
by Example 1: R1 ¼ ðfða; bÞ; ðb; cÞ; ðc; aÞg; ½1; 3�Þ, R2 ¼
ðfðd; cÞ; ðd; eÞ; ðc; eÞg; ½2; 4�Þ and R3 ¼ ðfðc; eÞ; ðe; fÞ; ðf; dÞ;
ðd; cÞg; ½3; 5�Þ. The coverage of R1, R2 and R3 are illustrated
in Fig. 1d. ByDefinition 7, the diversified top-2 lasting (2,3)-
cores is fR1; R3g. Since R1 and R3 only overlap on vertex c
at time t ¼ 3, we have jcovðfR1; R3gÞj=3*3+3*4-1*1=20.

Problem Statement (DLCP ). For temporal graph G and
parameter k, s and r, the Diversified Lasting Cohesive sub-
graph Problem (abbr. DLCP) aims to identify the diversified
top-r lasting ðk; sÞ-cores from G.

2.3 Problem Analysis

In this subsection, we first showDLCP is NP-hard and then
present some elegant properties for designing effectively
algorithms in next sections.

Theorem 1 (Hardness). DLCP is NP-hard.

Proof. For a family of sets F ¼ fS1; S2; :::g and parameter r,
the maximum r-coverage problem is to return subset R �
F such that jRj � r and [Si2Rfsjs 2 Sig is maximum.
Therefore, we can prove this theorem by reducing a special
case ofDLCP to themaximum r-coverage problem in poly-
nomial time. Specifically, we build a collection of sets F ¼
fS1; S2; :::g based on G ¼ ðV; E; T Þ, such that Sij ¼
fðvi1; jÞ; ðvi2; jÞ; :::g andGfvi1;vi2;:::g is a maximal k-core ofGj

for j 2 T . Thus, identifying DLCP from the temporal
graph G is equivalent to return the maximum r-coverage
from F when s ¼ 1. Since the reduction can be done in
polynomial time and the maximum r-coverage problem is
NP-hard [16], theDLCP is also NP-hard. tu

Given vertex set S and interval I with jIj � s, let GSðIÞ ¼
ðVSðIÞ; ESðIÞÞ be a subgraph, in which ESðIÞ ¼ \t2Ifðu; vÞj
ðu; v; tÞ 2 ESg and V ðIÞ is the end vertices of EðIÞ. We use
GðIÞ to denote GSðIÞwhen S ¼ V .

Property 1. Finding the maximal lasting ðk; sÞ-core in I is
equivalent to calculating the maximal k-core in GðIÞ.

Property 2. For any lasting ðk; sÞ-core ðGS; IÞ of temporal graph
G, GS is a k-core.
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By Definition 5, Property 1, 2 are true. For convenience,
we let Ck

SðIÞ be the maximal k-core of GSðIÞ. Note that we
need

P
t2I;ðu;v;tÞ2ES Oð1Þ time to compute Ck

SðIÞ.
Property 3. Given vertex set S, positive integer k and two inter-

vals I, I
0
, Ck

SðI
0 Þ � Ck

SðIÞ if I � I
0
.

Proof. It can be obtained that GSðI 0Þ � GSðIÞ if I � I
0
,

which implies that dGSðI0ÞðvÞ � dGSðIÞðvÞ for any v 2
VSðI 0Þ. Consequently, Ck

SðI
0 Þ � Ck

SðIÞ by Definition 3. tu

Corollary 1. Given vertex set S, positive integer k and two
intervals I ¼ ½ts; te�, I

0 ¼ ½t0s; t
0
e�, KcoreðCk

SðIÞ \ Ck
SðI 0ÞÞ ¼

Ck
S ð½ts; t

0
e�Þ if ts < t

0
s, te < t

0
e and te � t

0
s, where KcoreðGÞ is

the maximal k core of G.

Proof. I � ½ts; t
0
e� and I 0 � ½ts; t

0
e� since ts < t

0
s, te < t

0
e and

te � t
0
s. According to Property 3, we have Ck

Sð½ts; t
0
e�Þ � Ck

S

ðIÞ and Ck
Sð½ts; t

0
e�Þ � Ck

SðI 0Þ. Thereby, Ck
Sð½ts; t

0
e�Þ � Ck

SðIÞ \
Ck

SðI 0Þ. Furthermore, Ck
SðIÞ \ Ck

SðI 0Þ is also the subgraph
of GSð½ts; t

0
e�Þ. So,KcoreðCk

SðIÞ \ Ck
SðI 0ÞÞ ¼ Ck

S ð½ts; t
0
e�Þ. tu

3 THE GRELC ALGORITHM

Since DLCP is NP-hard as demonstrated in Theorem 1, it is
almost impossible to tackle DLCP in polynomial time
unless P=NP. Thereby, in this section, we devise a simple
greedy algorithm called GreLC with a guaranteed approxi-
mation ratio (Algorithm 1). Specifically, GreLC includes
two stages. The algorithm first calls Algorithm 2 to enumer-
ate all maximal lasting ðk; sÞ-cores (Line 1). Then, it adopts
a greedy manner to obtain an approximate result (Line 2-5).

Algorithm 1. GreLCðG; k; s; rÞ
Input: Temporal graph GðV; E; T Þ and three parameters k, s
and r
Output: The diversified top-r lasting ðk; sÞ-cores of G

1 LCk
sðGÞ  EnumðG; k; sÞ andR ;

2 for i=1 to r do
3 R�  argmaxR2LCk

sðGÞ
ðjcovðR [ fRgÞj � jcovðRÞjÞ

4 R  R[ fR�g and LCk
sðGÞ  LCk

sðGÞ n fR�g
5 returnR

3.1 Enumeration all Maximal Lasting ðk; sÞ-Cores
A Naive Approach. As described in Property 1, for an interval
I whose length is no less than s, we can attain the maximal
k-core of GðIÞ as the maximal lasting ðk; sÞ-core in I. Thus,
in order to enumerate all maximal lasting ðk; sÞ-cores from
a temporal graph GðV; E; T Þ, a naive approach is to identify
the maximal k-core in each possible subgraph GðIÞwith lin-
ear time by the peeling algorithm [21] and then eliminate
those non-maximal lasting ðk; sÞ-cores by checking all these
lasting ðk; sÞ-cores. Unfortunately, the total number of pos-
sible time intervals is quadratic in T , resulting in that the
total number of subgraph GðIÞ may also be quadratic in T .
Furthermore, the approach needs to visit the whole vertex
set V and takes OðmÞ time to compute GðIÞ. Consequently,
the time complexity of the naive approach is OðjT j2 	mþ
TcheckÞ (Tcheck is the time of maximal check), which is prohib-
itively high when jT j is very large as illustrated in Section 5.

AnEfficient Algorithm.According to properties discussed in
Section 2.3, we propose an efficient bottom up algorithm,

which is sketched inAlgorithm 2. The core insight of the algo-
rithm is to generate lasting ðk; sÞ-cores by a bottom up tree.
Fig. 2 presents this insight, in which all leaf nodes of the tree
are all lasting ðk; sÞ-cores with an interval length of s and all
non-leaf nodes are computed from two adjacent tree nodes in
the previous level.

Algorithm 2. EnumðG; k; sÞ
Input: Temporal graph GðV; E; T Þ and two parameters k and s

Output: The all maximal lasting ðk; sÞ-cores of G
1 Let G be the de-temporal graph of G
2 Let GSðS;ESÞ be the maximal k-core of G
3 LCk

sðGÞ  ; and Q ;
4 for i=1 to jT S j � s þ 1 do
5 if Ck

Sð½i; iþ s � 1�Þ 6¼ ; then
6 Q:pushððCk

Sð½i; iþ s � 1�Þ; ½i; iþ s � 1�ÞÞ
7 while Q 6¼ ; do
8 l ¼ jQj
9 if l=1 then
10 R Q:popðÞ, LCk

sðGÞ  LCk
sðGÞ [ fRg

else
11 R1 ¼ ðGS1 ; ½ts; te�Þ  Q:popðÞ, LCk

sðGÞ  LCk
sðGÞ [ fR1g

12 for i=1 to l� 1 do
13 R2 ¼ ðGS2 ; ½t

0
s; t
0
e�Þ  Q:popðÞ

LCk
sðGÞ  LCk

sðGÞ [ fR2g
14 if te � t

0
s andKcoreðGS1 \GS2Þ 6¼ ; then

15 Q:pushððKcoreðGS1 \GS2Þ; ½ts; t
0
e�ÞÞ

16 R1  R2

17 for ðGS; IÞ 2 LCk
sðGÞ do

18 if there is a lasting ðk;sÞ-core ðGS0 ; I
0Þ 2 LCk

sðGÞ s.t.GS � GS0

and I � I 0 then
19 LCk

sðGÞ ¼ LCk
sðGÞ n fðGS; IÞg

20 return LCk
sðGÞ

Specifically, Algorithm 2 first applies Property 2 to prune
some unqualified vertices, which can essentially lower the
cost of computing GðIÞ (Line 1-2), and then initializes set
LCk

sðGÞ to collect all maximal lasting ðk; sÞ-cores, queue Q to
store temporary lasting ðk; sÞ-cores ðGS; IÞ so that the new
lasting ðk; sÞ-core can be generated from Q by Corollary 1
(Line 3). In Line 4-16, the algorithm executes the bottom up
tree framework as illustrated in Fig. 2. Specifically, in Line 4-6,
the algorithm computes all non-empty lasting ðk; sÞ-cores
ðGS; IÞ in Q with jIj ¼ s. In Line 7-16, the algorithm applies
the Corollary 1 to compute the rest lasting ðk; sÞ-cores ðGS; IÞ
with jIj > s, where KcoreðGÞ is used to compute the maxi-
mal k-core of G. In Line 17-19, the algorithm eliminate those
non-maximal lasting ðk; sÞ-cores by checking all these lasting

Fig. 2. The bottom up tree example.
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ðk; sÞ-cores. Clearly, Algorithm 2 can identify all maximal
lasting ðk; sÞ-cores of G.

Example 3. Reconsider temporal graph G in Fig. 1a. We
assume that k ¼ 2 and s ¼ 2. It is easy to know that G is a
2-core, since each vertex v in G has at least two neighbors.
Thus, by Property 2, we do not prune any unqualified
nodes. Then, Fig. 2 illustrates Line 4-16 of Algorithm 2.
Concretely, all leaf nodes of the tree in Fig. 2 show all last-
ing (2,2)-cores with jIj ¼ 2. The rest lasting (2,2)-cores
with jIj > 2 can be iteratively generated from the previ-
ous level, as illustrates in Fig. 2.

3.2 Analysis

Our greedy algorithm GreLC, which is outlined in Algo-
rithm 1, can generate a diversified top-r lasting ðk; sÞ-cores
with ð1� 1=eÞ approximation ratio. The approximation ratio
is guaranteed based on the correctness of Algorithm 2 and
the greedy framework [16]. Since GreLC calls Algorithm 2,
we next give the complexity analysis of Algorithm 2.

Theorem 2. The time complexity of Algorithm 2 is OðjT j 	m
þjT j2 	 �mþ TcheckÞ.

Proof. The algorithm first takes Oð �mÞ to get maximal k-core
of de-temporalG (Line 2). Then, Line 4-6 run in OðjT j 	mÞ
time to compute the shortest interval results. Subsequently,
the algorithm takes OðjT j2 	 �mÞ to get the longer interval
results (Line 7-16). Finally, the algorithm takes Tcheck time
to eliminate the non-maximal lasting ðk; sÞ-cores in Line
17-19. Putting these together, Algorithm 2 takes OðjT j 	
mþ jT j2 	 �mþ TcheckÞ to get all maximal lasting ðk; sÞ-cores
in total. tu

Remark 1. Even though the worse-case time complexity of Algo-
rithm 2 is comparable to the naive approach, it is actually faster
as illustrated in Section 5.

Note that for any maximal lasting ðk; sÞ-core ðGS; IÞ in
LCk

sðGÞ, we only store the vertices of GS and the two end-
points of the interval I in real storage. By doing so, we just
need to traverse vertices and timestamps in R and R to get
covðR [ fRgÞ and covðRÞ.

Theorem 3. The time complexity and space complexity of Algo-
rithm 1 are OðjT j 	mþ jT j2 	 �mþ Tcheck þ jLCk

sðGÞj 	 n 	 r2 	
jT jÞ and OðjLCk

sðGÞj 	 nþmÞ respectively.

Proof. For the time complexity, the algorithm first takes
OðjT j 	mþ jT j2 	 �mþ TcheckÞ to run the Enum procedure
(Line 1). Then, Line 3 runs inOðjLCk

sðGÞj 	 nrjT jÞ time since
computing jcovðR [ fRgÞj � jcovðRÞj takes OðnrjT jÞ time
for any R 2 LCk

s . Putting these together, Algorithm 1 takes
OðjT j 	mþ jT j2 	 �mþ Tcheck þ jLCk

sðGÞj 	 n 	 r2 	 jT jÞ in total.
For the space complexity, Algorithm 1 needs OðnÞ

extra space to store each maximal lasting ðk; sÞ-core. In
addition, we also need to store the temporal graph.
Therefore, the space complexity of Algorithm 1 is O
ðjLCk

sðGÞj 	 nþmÞ. tu

Drawbacks of GreLCAlgorithm. Although GreLC has a
bounded approximation ratio, it cannot handle large tempo-
ral graphs as shown in the experiments. The reasons are as fol-
lows: (1) the number of maximal lasting ðk; sÞ-cores increases
squarely as jT j grows. Thus, GreLC requires a lot of memory

to store LCk
sðGÞ for selecting greedily; (2) the time complexity

of selecting greedily diversified top-r lasting ðk; sÞ-cores sig-
nificantly increases with increasing LCk

sðGÞ; (3) enumerating
the maximal lasting ðk; sÞ-core in each GðIÞ, checking maxi-
mal (Line 17-19 of Algorithm 2) andmaximum r-coverage are
isolated. Therefore, the following four challenges need to be
addressed. The first challenge is how to avoid storing all max-
imal lasting ðk; sÞ-cores in memory. The second challenge is
how to avoid enumerating all maximal lasting ðk; sÞ-cores for
computing the final result efficiently. The third is how to inter-
leave enumeration procedure, checking maximal and maxi-
mum r-coverage. The final challenge is how to guarantee the
quality of results when not all maximal lasting ðk; sÞ-cores are
enumerated and stored. In following section, we will propose
somemore efficient algorithms to solveDLCP with a compa-
rable and guaranteed approximation ratio.

4 THE TOPLC ALGORITHM

We devise a DFS-based search algorithm, named TopLC, to
dynamically store at most r candidate maximal lasting
ðk; sÞ-cores that facilitates the pruning process. Specifically,
we first propose some rules to effectively update the candi-
date results when a new maximal lasting ðk; sÞ-core is gen-
erated in Section 4.1. Then, we introduce the DFS-based
search algorithm in Section 4.2. Finally, a powerful temporal
graph reduction algorithm is developed in Section 4.3,
which essentially reduces the search cost.

4.1 Updating the Candidate Results

Assume that our search algorithm keeps at most r candidate
maximal lasting ðk; sÞ-cores in a setR, an important problem
is how to updateRwhen a newmaximal lasting ðk; sÞ-coreH
is generated. For any R 2 R, we let DðR;RÞ ¼ covðRÞn
covðR n fRgÞ and Rmin ¼ argminR2RjDðR;RÞj. Intuitively,
DðR;RÞ represents the private coverage of R in R and Rmin

has minimal private coverage among all maximal lasing
ðk; sÞ-cores in R. The following two rules are used to update
setR:

Rule 1. When jRj < r,R ¼ R [ fHg;
Rule 2. When jRj ¼ r and jcovððR n fRmingÞ [ fHgÞj �

ð1þ 1
rÞjcovðRÞj,R ¼ ðR n fRmingÞ [ fHg;

Obviously, Rule 1 is self-explanatory. For Rule 2, we
only update set R when the coverage increases is not less
than 1

r times before the update. Consequently, the two
rules can guarantee that R has an approximate ratio of 1

4
according to [16].

Basic Update Method. For updating set R, a basic method
is to traverse vertices and timestamps inH andR. The basic
method needs Oðnr2 	 jT jÞ time to get Rmin and Oðnr 	 jT jÞ
time to get covðRÞ or covððR n fRmingÞ [ fHgÞ. Thereby, the
time complexity of the basic update method is Oðnr2 	 jT jÞ.
Unfortunately, our search algorithm may need to update R
frequently (see Section 4.2), thus using this basic method is
time consuming. To reduce the complexity of the update
procedure and to boost algorithm design in Section 4.2, we
convert Rule 2 into the following rule:

Rule 20. When jRj ¼ r and jDðH; ðR n fRmingÞ [ fHgÞj �
jDðRmin;RÞj þ jcovðRÞjr ,R ¼ ðR n fRmingÞ [ fHg;

Effective Update Method.With this new rule, we propose an
effective algorithm with two indexes to execute the update,
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which is outlined in Algorithm 3. Algorithm 3 maintains dic-
tionary A and B. For each entry of A, the key is a pair ðv; tÞ
and the value is Aðv; tÞ ¼ fðGS; IÞ 2 Rjv 2 S; t 2 Ig. For each
entry ofB, the key is an integer i and the value isBðiÞ ¼ fR 2
RjjDðR;RÞj ¼ ig. Clearly, Rmin can be got from B in constant
time by indexing the smallest key of B. In Line 1-2, the algo-
rithm executes the Rule 1. Rule 20 is executed in Line 3-6. In
Algorithm 3,PcovðH;RÞ is used to compute the private cover-
age of H in ðR n fRmingÞ [ fHg, which can be divided into
two parts. One part is not covered by R (Line 9-11), and the
other is only covered by H (Line 12-13). For operation
AddðR;HÞ, if ðv; tÞ is not a key in A, the algorithm initializes
Aðv; tÞ ¼ fHg and jDðH;RÞj is increased by 1 due to ðv; tÞ is
only covered byH (Line 17-19). If ðv; tÞ is a key in A and only
covered by a single maximal lasting ðk; sÞ-core R, the algo-
rithm updates B in Line 21-22 since ðv; tÞ will not be covered
only by R after inserting H. In the same way, DeleteðRÞ
removes Rmin fromR and B (Line 25). Meanwhile, the proce-
dure updates dictionaryA andB accordingly (Line 26-32).

Algorithm 3. Update(R,H, r)

Input: The candidate resultR, a mew maximal lasting
ðk; sÞ-coreH and a parameter r

Output: The updated resultR
1 if jRj < r then
2 AddðR,H)
else

3 jcovðRÞj ¼ jAj
4 if PcovðH;RÞ � jDðRmin;RÞj þ jcovðRÞjr then
5 DeleteðR)
6 AddðR,H)
Procedure PcovðH;R)

7 count 0 and obtain Rmin from B
8 for v; t 2 H do
9 if ðv; tÞ =2 A then
10 count countþ 1
11 continue
12 if v; t 2 Rmin and jAðv; tÞj ¼ 1 then
13 count countþ 1
14 return count

Procedure AddðR,H)
15 addH intoR and jDðH;RÞj  0
16 for v; t 2 H do
17 if ðv; tÞ =2 A then
18 Aðv; tÞ ¼ fHg and jDðH;RÞj  jDðH;RÞj þ 1
19 continue
20 if jAðv; tÞj ¼ 1 and Aðv; tÞ ¼ fRg then
21 move R in B from BðjDðR;RÞjÞ to BðjDðR;RÞj � 1Þ
22 jDðR;RÞj  jDðR;RÞj � 1
23 insert H into Aðv; tÞ
24 insert H into B based jDðH;RÞj

ProcedureDeleteðRÞ
25 obtain Rmin from B and remove Rmin fromR and B
26 for v; t 2 Rmin do
27 remove Rmin from Aðv; tÞ

if jAðv; tÞj ¼ 1 and Aðv; tÞ ¼ fRg then
28 move R in B from BðjDðR;RÞjÞ to BðjDðR;RÞj þ 1Þ
29 jDðR;RÞj  jDðR;RÞj þ 1
30 continue
31 if jAðv; tÞj ¼ 0 then
32 remove ðv; tÞ from A

Theorem 4. The time complexity of Algorithm 3 is Oðmax
fjV ðHÞj 	 jIðHÞj; jV ðRminÞj 	 jIðRminÞjgÞ, in which V ðHÞ and
IðHÞ (resp. V ðRminÞ and IðRminÞ) are the vertices and interval
ofH (resp. Rmin).

Proof. Since an entry can be deleted from or inserted to a
dictionary in constant time. Thereby, the time complexity
of PcovðH;RÞ, AddðR; HÞ and DeleteðRÞ are OðjV ðHÞj 	
jIðHÞjÞ, OðjV ðHÞj 	 jIðHÞjÞ and OðjV ðRminÞj 	 jIðRminÞjÞ
respectively. So, the time complexity of Algorithm 3 is
OðmaxfjV ðHÞj 	 jIðHÞj; jV ðRminÞj 	 jIðRminÞjgÞ. tu

Remark 2. Clearly, Algorithm 3 is theoretically less time com-
plexity than the previous basic update method, and we have
also verified it experimentally in Section 5.

4.2 The DFS-Based Search Algorithm

The high-level insight of the search algorithm is to generate
new maximal lasting ðk; sÞ -cores in depth-first manner,
that is, to explore the timestamp as far as possible along
each search branch before backtracking. Fig. 3 illustrates
the insight, root node represents the reduced temporal
graph by Algorithm 5 in Section 4.3 and each of the remain-
ing tree nodes is a search space ðS; IÞ, in which S represents
the candidate vertices and I refers to the search interval.
The search order of the algorithm is to execute search
branch 1 first, then execute search branch 2 after comple-
tion, and so on. Before describing the DFS-based search
algorithm in detail, we design three powerful pruning tech-
niques: candidate vertex pruning, early termination and
checkingmaximal.

Definition 8. (Lasting ðk; sÞ-Interval of Node) For temporal
graph G, parameter k and s and node u, interval I is called a
lasting (ðk; sÞ-interval of u if jIj � s and dGtðuÞ � k for any
t 2 I. Furthermore, we let LIðuÞ be all lasting (ðk; sÞ-intervals
of u.

Based on Definition 8, we propose the following lemma
for pruning some unqualified candidate vertices.

Lemma 1. (Candidate Vertex Pruning) For any search space
ðS; IÞ, we can safely prune vertex u from S without losing any
lasting ðk; sÞ-core in I if I is not included in any interval of
LIðuÞ.

Proof. By Definition 8, there is time t 2 I such that dGtðuÞ <
k if I is not included in any interval of LIðuÞ. Thus, u can-
not be included in any lasting ðk; sÞ-core in I according to

Fig. 3. Illustration for DFS-based search algorithm.
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Definition 4. Consequently, u is removed from S without
loss of accuracy. tu

The DFS-based search also has the following powerful
advantage: if the current search space cannot generate a
lasting ðk; sÞ-core or is unlikely to improve the coverage
quality according to Rule 20, we can safely prune the whole
search space. We state the advantage as follows.

Algorithm 4. TopLC(G, k, s, r)
Input: Temporal graph GðV; E; T Þ and three parameters k, s
and r
Output: The diversified top-r lasting ðk; sÞ-cores of G

1 ðGP ; LIÞ  ReductionðG; k; sÞ
2 R  ;, flag ;
3 for i ¼ 1 to jT P j � s þ 1 then
4 SearchðP , ½i; iþ s � 1�, flag)
5 returnR

Procedure SearchðS, ½ts; te�, flag)
6 D ;
7 for u 2 S do
8 if ½ts; te� is not included in any interval of LIðuÞ then
9 D:pushðuÞ
10 S  S nD
11 if jRj ¼ r and jSjðjT P j � ts þ 1Þ < jDðRmin;RÞj þ jcovðRÞjr

then
12 return
13 if Ck

Sð½ts; te�Þ ¼ ; then
14 return
15 if flag ¼ ; then
16 flag:pushðCk

Sð½ts; te�Þ
else

17 H=flag:popðÞ
18 ifH is maximal by Lemma 3 then
19 UpdateðR,H, r)
20 flag:pushðCk

Sð½ts; te�Þ
21 if te ¼ jT P j then
22 return
23 else

Search(S, ½ts; te þ 1�, flag)

Lemma 2. (Early Termination) For any search space ðS; ½ts; te�Þ,
we can safely prune the whole search space if it satisfies one of the
following conditions: (1) Ck

Sð½ts; te�Þ ¼ ;; (2) jRj ¼ r and
jSjðjT P j � ts þ 1Þ < jDðRmin;RÞj þ jcovðRÞjr .

Proof. The first condition is obvious. For any lasting
ðk; sÞ-core H of descendants of ðS; ½ts; te�Þ, jDðH; ðR n
fRmingÞ [ fHgÞj � jSjðjT P j � ts þ 1Þ. Thereby, jDðH; ðR n
fRmingÞ [ fHgÞj � jDðRmin;RÞj þ jcovðRÞjr . Consequently,
by Rule 20, we can safely prune the whole search space
due to none of the descendants of ðS; ½ts; te�Þ can be
included in ourDLCP . tu
Recall that in Algorithm 2, we check the maximality of

Definition 5 based on all lasting ðk; sÞ-cores. The time com-
plexity increases with the number of all lasting ðk; sÞ-cores.
However, our search algorithm doesn’t enumerate all last-
ing ðk; sÞ-cores in advance. Thus, one significant challenge
in implement DFS-based search algorithm is how to check
maximality without enumerating all lasting ðk; sÞ-cores.
Fortunately, we can effectively check maximality based on
the following observation.

Algorithm 5. Reduction(G, k, s)
Input: Temporal graph GðV; E; T Þ and two parameters k, s
Output: The reduced temporal graph

1 Let GC ¼ ðC;ECÞ be the maximal k-core of de-temporal
graph G of G

2 Q ;,D ; and LI  ½;�
3 for v 2 C do
4 count 0
5 for t 1 : jT C j do
6 dtðvÞ  jNGtðvÞ \ Cj
7 if dtðvÞ � k then
8 count ¼ countþ 1 and continue
9 Q:pushððv; tÞÞ and dtðvÞ ¼ 0
10 if count < s then
11 Q:pushððv; t1ÞÞ and dt1ðvÞ ¼ 0, t1 2 ½t� count : t� 1�

else
12 LIðvÞ ¼ LIðvÞ [ f½t� count; t� 1�g
13 count 0
14 while Q 6¼ ; do
15 ðv; tÞ  Q:popðÞ andD ¼ D [ fðv; tÞg
16 for u 2 NGtðvÞ \ C and dtðuÞ 6¼ 0 do
17 dtðuÞ ¼ dtðuÞ � 1
18 if dtðuÞ < k then
19 UpdateLasting(LIðuÞ; t)
20 return (GC nD;LIÞ

Procedure UpdateLasting(LIðuÞ; t)
21 Q:pushððu; tÞÞ, dtðuÞ ¼ 0
22 Let ðs; eÞ 2 LIðuÞ and s � t � e
23 LIðuÞ ¼ LIðuÞ n f½s; e�g
24 if t� s � s then
25 LIðuÞ ¼ LIðuÞ [ f½s; t� 1�g

else
26 Q:pushððu; t1ÞÞ and dt1ðuÞ ¼ 0, t1 2 ½s : t� 1�
27 if e� t � s then
28 LIðuÞ ¼ LIðuÞ [ f½tþ 1; e�g

else
29 Q:pushððu; t2ÞÞ and dt2ðuÞ ¼ 0, t2 2 ½tþ 1 : e�

Observation 1. A search space cannot be contained by another
search space in the subsequent search branch, but it can be con-
tained by its descendants.

Lemma 3 (Checking Maximal). Given a lasting ðk; sÞ-core
ðGS; ½ts; te�Þ, ðGS; ½ts; te�Þ is maximal if (i) S 6¼ V ðRÞ, in which
R is the lasting ðk; sÞ-core generated by the search space
ðS; ½ts; te þ 1�Þ; (ii) ðGS; ½ts; te�Þ is maximal inR.

Proof. According to Observation 1, it is only necessary to
pay attention to the descendants of ðS; ½ts; te�Þ and the ele-
ments in R when doing the maximal check on a lasting
ðk; sÞ-core ðGS; ½ts; te�Þ. Thus, we can safely claim that
ðGS; ½ts; te�Þ is maximal if conditions (1) and (2) hold. tu

With these powerful pruning techniques, we introduce
an efficient algorithm TopLC, which is sketched in Algo-
rithm 4, to implement the DFS-based search. Concretely, the
algorithm first applies Algorithm 5 to reduce some unquali-
fied nodes and obtain all lasting (ðk; sÞ-intervals of each
node in Line 1 (more detail in Section 4.3). And then
the algorithm initializes the candidate result set R and a
flag (Line 2). Note that the flag is used to test whether the
element in flag is maximal by Lemma 3. Subsequently, the
algorithm performs depth-first search by starting each
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search branch with the shortest interval (Line 3-4). Finally,
the algorithm outputs R as the diversified top-r lasting
ðk; sÞ-cores of G.

For the Procedure Search, it first checkswhether each node
in S should be preserved by Lemma 1 (Line 6-9). And then the
algorithm invokes Lemma 2 to determine whether prune the
current search space (Line 11-20). If it is, the algorithm jumps
to next search branch (Line 11-14). Otherwise, in Line 15-20,
the algorithm invokes Lemma 3 to execute the maximal check
and calls Algorithm 3 to update R. In Line 21-23, the algo-
rithm extends the current search interval into next search
space. Clearly, Algorithm 4 performs a DFS-based enumera-
tion search with some update rules in Section 4.1. Thereby, it
can derive correctlyDLCP based on the correctness of above
three pruning techniques and Algorithm 5, which is stated in
Section 4.3.

4.3 Temporal Graph Reduction

In this subsection, we design a temporal graph reduction
algorithm to implement Line 1 of Algorithm 4.

Lemma 4 (Temporal Graph Reduction). For a vertex u, let
T �u ¼ ftjdGtðuÞ < kg and T þu ¼ fIjdGtðuÞ � k; t 2 Ig. We
can safely prune u at any timestamp t 2 T �u and within I 2
T þu such that jIj < s.

By Definition 4, we know the lemma is clearly true. Intui-
tively, T �u and T þu are used to prune some unqualified verti-
ces with low degrees and short durations respectively.
Meanwhile, we also know LIðuÞ ¼ fI 2 T þu jjIj � sg accord-
ing toDefinition 8. Thus, we designAlgorithm 5 to implement
Lemma 4 and get all lasting ðk; sÞ-intervals of each node.

Concretely, Algorithm 5 first computes the maximal
k-core of G (Line 1) and initializes queue Q to maintain all
ðv; tÞ that means v need to be deleted at time t by Lemma 4
and setD to collect deleted pair ðv; tÞ (Line 2). Subsequently,
in Line 4-13, the algorithm checks whether each ðv; tÞ should
be deleted and obtains temporary LIðvÞ. And then, the
algorithm processes iteratively pair ðv; tÞ inQ to reducemore
unqualified nodes and update LIðvÞ (Line 14-19 and Line 21-
29). Finally, the algorithm returns the reduced temporal
graph and all lasting ðk; sÞ-intervals of each node (Line 20).

The following example illustrates the whole procedure of
DFS-based search algorithm.

Example 4. Reconsider temporal graph G in Fig. 1a. We
assume that k ¼ 2, s ¼ 2 and r=3. Algorithm 4 first recalls
Algorithm 5 to obtain GP and LI. In particular, by Line 3-
13 of Algorithm 5, a is pruned at time 4 and 5 due to its
low degrees and short duration according to Lemma 4.
Similarly, b and d are pruned at time 5 and 1, respectively.
Algorithm 5 further processes iteratively the previous
deletion vertices and updates LI. Consequently, f and e
are both pruned at time 1. Meanwhile, we obtain LIðaÞ ¼
f½1; 3�g, LIðbÞ ¼ f½1; 3�g, LIðcÞ ¼ f½1; 5�g, LIðdÞ ¼ f½2; 5�g,
LIðeÞ ¼ f½2; 5�g, LIðfÞ ¼ f½2; 5�g. Then, Algorithm 4 exe-
cutes depth-first search as illustrated in Fig. 3. The search
space ðfa; b; c; d; e; fg; ½1; 3�; ;Þ is processed first. Since [1,3]
is not included in any interval of LIðdÞ, LIðeÞ or LIðfÞ, d,
e and f are pruned by Lemma 1. And then the search
space passes the early termination as stated in Lemma 2
and is pushed in flag for later maximal checking.

Subsequently, it extends the current search space ðfa; b;
cg; ½1; 3�; Ck

fa;b;cg½1; 3�Þ into next search space ðfa; b; cg; ½1; 4�;
Ck
fa;b;cg½1; 3�Þ. For search space ðfa; b; cg; ½1; 4�; Ck

fa;b;cg½1; 3�Þ,
since [1,4] is not included in any interval of LIðaÞ or
LIðbÞ, a and b are pruned by Lemma 1 and the search
space cannot pass the early termination, resulting in that
the search branch is cut off and jumps to next search
branch. Subsequently, the search space ðfa; b; c; d; e; fg;
½2; 4�; Ck

fa;b;cg½1; 3�Þ is processed. Since [2,4] is not included
in any interval of LIðaÞ or LIðbÞ, a and b are pruned by
Lemma 1. And then the search space passes the early ter-
mination and the element Ck

fa;b;cg½1; 3� in flag also passes
maximal checking by Lemma 3, resulting in that
Ck
fa;b;cg½1; 3� can be used to update R by executing Algo-

rithm 3. For the remaining search space, we use the same
procedure, and we will obtain the diversified top-3 last-
ing (2,2)-cores: fCk

fa;b;cg½1; 3�; Ck
fc;d;eg½2; 4�; Ck

fa;b;c;d;e;fg½2; 3�g.

5 EXPERIMENTAL EVALUATION

Here, we conduce extensive experiments for evaluating the
efficiency and effectiveness of our proposed solutions. All
experiments are conducted on a server with an Intel Xeon
2.50GHZ CPU and 32GB memory running Ubuntu 18.04.

5.1 Experimental Setup

Datasets. Six real-world datasets1 with different types are used
in our experiments. Lkml and Enron are communication net-
works that appear in Linux kernelmailing list and Enron com-
pany respectively, in which vertices represent users while
edge ðu; v; tÞ signifies that u sent v amessage at time t. Last is a
co-listening network that appears in the Last.fm streaming
platform.DBLP is a scientific collaboration network, in which
vertices represent authors and each temporal edge ðu; v; tÞ
refers to the authors u and v coauthored a publication at time
t. Wiki is a network showing that users edit the same page at
the same timestamp. Epin is a co-rating network, where the
timestamps of each edge represent when the two users co-
rated one common item together. In our experiments, the self-
loops are deleted and the directed temporal graphs are con-
verted into undirected temporal graphs. In a nutshell, the sta-
tistical information of datasets are exhibited in Table 2.

Parameters. Our model involves three parameters: s (the
parameter of time duration), k (the parameter of k-core) and
r (the parameter of diversification). Let p and q be the per-
centage of nodes and temporal edges of original graph
respectively for testing the scalability of our algorithms. The
default values and ranges of parameters are exhibited in
Table 3. Unless otherwise stated, we set the default values
of other parameters when changing a parameter.

5.2 Efficiency Evaluation

We implement five different algorithms to test the efficiency
of the proposed algorithms: Naive, Enum, GreLC, TopLC
and TopLC-B. Naive and Enum are used to enumerate all
maximal lasting ðk; sÞ-cores by applying the naive approach
discussed in Section 3.1 and Algorithm 2 respectively.GreLC
and TopLC are used to identify diversified top-r lasting
ðk; sÞ-cores by applying Algorithms 1 and 4 respectively.

1. All datasets can be accessed from http://konect.unikoblenz.de/
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TopLC-B is the TopLC algorithm with the basic update
method stated in Section 4.1. Since no existing work mines
diversified top-r lasting ðk; sÞ-cores from temporal networks,
we use Naive and GreLC as baselines for efficiency testing.
The experimental results are reported as follows.

Exp-1: Running Time of Naive and Enum. In this experi-
ment, we report the running time of enumerating all maximal
lasting ðk; sÞ-cores. Specifically, we report the running time of
Naive and Enum with default parameters on all datasets.
Other parameters can obtain similar trends. By Fig. 5, the run-
ning time of the Enum is 1-3 orders of magnitude faster than
the Naive on all datasets. For instance, Enum takes 89864
milliseconds to enumerate all maximal lasting ðk; sÞ-cores
from DBLP dataset, while Naive takes 5231769 milliseconds.
These results demonstrate that Corollary 1 applied in Enum
can indeed reduce the computational cost.

Exp-2: Running Time of Various DLCP Mining Algorithms.
Fig. 6 illustrates the efficiency of variousDLCP mining algo-
rithms with default parameters on all datasets. Clearly,
TopLC �B is consistently faster than GreLC on all datasets.
For instance, TopLC �B takes 22521 milliseconds to mine
DLCP from DBLP dataset, while GreLC takes 109421 milli-
seconds. These results indicate our proposed pruning techni-
ques in Section 4.3 are very effective in practice. Moreover,
TopLC is more efficient than TopLC �B on all datasets. For
instance, TopLC only takes 6042 milliseconds to identify
DLCP from DBLP dataset. These results are consistent with
the theoretical analysis in Section 4.1. However, we also
observe that TopLC, TopLC �B and GreLC have similar
running time on Last,Wiki and Epin. The reason for this phe-
nomenon can be explained as follows. These three datasets
are interactive frequently, that is, the topology of each data-
set changes significantly from one timestamp to another.
Thereby, they have fewer maximal lasting ðk; sÞ-cores,
resulting in that the optimization strategies in TopLC are
greatly discounted.

Exp-:3 Running Time of TopLC With Varying Parameters.
Because TopLC is faster than the other algorithms, we only
report the effect of different parameters on the efficiency of
TopLC in this experiment. Figs. 4a and 4b illustrate the
results with varying k and s on all datasets. As we have
seen, the running time decreases with increasing k or s.
Because the performance of pruning candidate vertices and
early termination is improved with increasing k or s, more
vertices or search spaces are pruned. Fig. 4c reports the
results with varying r. Differently, the running time of
TopLC remains quite stable with varying r on all datasets.
Because the number of maximal lasting ðk; sÞ-cores is
unchange even for a large r, resulting in that the number of
search spaces does not change with r. Thereby, the TopLC is
insensitive to parameter r. It further proves that iTopLC is
more efficient than the greedy algorithm GreLC.

Exp-4: Coverage Quality of GreLC and TopLC With Varying
Parameters. We report the coverage quality of GreLC and
TopLC with varying parameters on Enron andDBLP in Fig. 7.
Note that we do not consider the effect of r on the coverage
quality, because the bigger r is, the better the quality is accord-
ing to Definition 7. The other datasets can also observe similar
trends. As can be seen, the coverage quality obtained by
GreLC and TopLC are almost equal. It further demonstrates
the approximation ratios of TopLC and GreLC are also almost
equal in practice. As expected, the coverage decreases with an
increasing k or s. Because with a larger k or s, the restriction
of maximal lasting ðk; sÞ-core will be stronger, resulting in
that the coverage ofDLCP decreaseswith increasing k or s.

Exp-5: Scalability Testing. The larger dataset Epin is chosen
to evaluate the scalability ofGreLC and TopLC under default
parameter. Concretely, we generate five temporal subgraphs
by varying parameter p and q as stated in Table 3 (i.e., ran-
domly choosing 20-100 percent nodes or temporal edges from
the Epin). Subsequently, we test the running time of GreLC
and TopLC on these temporal subgraphs. As Fig. 8 illustrates,
GreLC and TopLC scales near liner with respect to the size of
the temporal subgraphs. Consequently, our algorithms can
handle large real-world temporal networks.

5.3 Effectiveness Evaluation

For testing the effectiveness, we compare our model against
four baseline models: Kcore, DivClique [20], TDense [7] and
Pcore [10]. The Kcore is a conventional cohesive subgraph
model that applies the peeling algorithm [21] to compute
the maximal k-core from the de-temporal graph G. The
DivClique, TDense and Pcore are state-of-the-art temporal
cohesive subgraph models (see Section 6 for details).

Effectiveness Metrics. Most well-known effectiveness met-
rics (e.g., conductance or density) only consider structural

TABLE 2
Datasets

Dataset n ¼ jV j m ¼ jEj jT j �m ¼ jEj TU

Lkml 26,885 328,092 98 159,996 1 Month
Enron 86,803 498,994 49 296,831 1 Month
Last 992 4,432951 77 369,973 27 Day
DBLP 1,824,701 11,865,584 80 8,344,615 1 Year
Wiki 298,386 18,086,734 101 10,519,921 56 Day
Epin 109,757 33,412,111 25 24,994,363 21 Day

TU is the time unit for each snapshot.

TABLE 1
Summary of Notations

Symbol Definition

G, GS a temporal graph and its temporal subgraph
V , E, T the node set, temporal edge set and time domain ofG
G, GS the de-temporal graph of G, a subgraph of G
SupðGSÞ time support set of GS in Definition 1
lsðGSÞ s-lasting support set of GS in Definition 2
k, s, r the parameters used in our model
LCk

sðGÞ the set of maximal lasting (k; s)-cores of G
covðRÞ the cover ofR in Definition 6
LIðuÞ all lasting (ðk; sÞ-intervals of u in Definition 8

TABLE 3
Parameter Setting

Parameter Range Default Value

s 2,3,4,5,6 3
k 3,4,5,6,7 4
r 5, 10, 15, 20, 25 10
p 20%, 40%, 60%, 80%, 100% 100%
q 20%, 40%, 60%, 80%, 100% 100%

LIN ETAL.: MINING DIVERSIFIED TOP-R LASTING COHESIVE SUBGRAPHS ON TEMPORAL NETWORKS 1545

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 05:58:57 UTC from IEEE Xplore.  Restrictions apply. 



information but temporal attributes. Fortunately, there are
two goodness metrics, burstiness [14] and temporal condu-
ctance [22], which can measure the average density and the
temporal separability of a single temporal subgraph respe-
ctively. Let R ¼ fðS1; I1Þ; ðS2; I2Þ; . . . ; ðSr; IrÞg be a set of
temporal subgraphs, we generalize above two metrics to
accommodate our top-k problem as follows.

Average burstiness (AB) calculates the density of the
internal structure of the temporal subgraphs. That is,
good temporal cohesive subgraphs should be densely con-
nected by internal structure. Formally, ABðRÞ ¼ ½

P
ðSi;IiÞ2Rjfðu;v;tÞ2Eju;v2Si;t2Iigj

jSijðjSij�1ÞjIij �=r.
Average temporal conductance (ATC) measures the sep-

arability of temporal subgraphs, that is good temporal

cohesive subgraphs well-separated from the rest of the
graph. Formally, ATCðRÞ ¼ ½

P
ðSi;IiÞ2R

cutðSi;IiÞ
minfvolðSi;IiÞ;volðV nSi;IiÞg�=r, in

which cutðS; IÞ ¼ jfðu; v; tÞ 2 Eju 2 S; v 2 V n S; t 2 Igj and
volðS; IÞ ¼

P
u2S

P
t2I dGtðuÞ.

Intuitively, the larger ABðRÞ is, the denser R is in the
whole temporal extent. In a similar way, the smaller
ATCðRÞ is, the farther awayR is from the rest of the graph.

Exp-6: Effectiveness of Kcore, DivClique, TDense, Pcore and
DLCP . In this experiment, we report the effectiveness of the
temporal subgraphs detected using different models under
with their default parameters on all datasets. The other
parameters can also observe similar results. According to
Table 4, we see that the best scores are achieved by our model
on all datasets except for Lkml in terms of ATC metric. The
result indicates our model is more capable of preserving tem-
poral separability than other baseline models. On the other

Fig. 6. Running time of variousDLCP mining algorithms.

Fig. 4. Running time of TopLC with varying parameters.

Fig. 5. Running time of Naive and Enum.

Fig. 7. Coverage quality of GreLC and TopLC with varying parameters.

Fig. 8. Scalability on Epin (k ¼ 4, s ¼ 3 and r ¼ 10).
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hand, the TDense is better than other models in terms of AB
metric (but the TDense has poor ATC metric), and our model
is runner-up and slightlyweaker thanTDense. This is because
that TDense obtains the subgraphs with maximum total den-
sity, which is proportional to the AB metric. More generally,
DivClique andPcore outperformKcorew.r.tABmetric, while
they are worse than Kcore in terms of the ATC metric. The
reason is that the DivClique and Pcore consider the temporal
dimension of the graphs, so these subgraphs are more dense
in the whole temporal extent. In a nutshell, this experiment
indicates our model can find much denser and more separa-
ble sub-graphs in terms of temporal feature than the baselines.

Exp-7: Effectiveness of DLCP With Varying Parameters on
Epin. Fig. 9 illustrates the effectiveness of our DLCP model
on Epin dataset by varying k or s with r ¼ 10. The other
datasets can also obtain similar results. By Fig. 9a, AB
increases with an increasing k. Because the structural cohe-
siveness of lasting ðk; sÞ-core is improved with a larger k,
these subgraphs are more dense. Since k does not affect the
temporal separability, ATC is stable with increasing k. As
seen in Fig. 9b, AB increases while ATC decreases with an
increasing s. Because with a larger s, the time duration of
lasting ðk; sÞ-core will be stronger, these subgraphs are
more dense and far away from the rest of the graph.

Exp-8: Case Study on DBLP. Fig. 10 visualizes the top-2 tem-
poral cohesive subgraphs containing node Prof. Jiawei Han
detected by our model on DBLP datasets with k ¼ 3 and s=3.
Note that the cohesive subgraph identified byKcore2 contains
1225183 authors that come from diverse research domains
and their cooperation was intermittent rather than lasting.
This results indicate thatKcore is ineffective to identify lasting
cohesive subgraphs. However, as shown in Fig. 10, our model
can identify lasting cohesive subgraphs from a temporal net-
work. For example, in Fig. 10a, the cohesive subgraph
obtained by our model is a stable research team, because all
researchers in this cohesive subgraph collaborate closely and
lastly with Prof. Jiawei Han from 2009 to 2011. Additionally,
we also look at the homepage of Prof. Jiawei Han (https://
hanj.cs.illinois.edu/), and find that other authors in Fig. 10a
are indeed Han’s academic partners during 2009-2011. Simi-
lar results can also be seen in Fig. 10b, in which other authors
are Han’s students during 2014-2016. These results indicate

that our model can indeed identify lasting cohesive sub-
graphs from a temporal network.

6 RELATED WORK

Identifying diversified lasting cohesive subgraphs from
temporal networks is a novel problem that has not been
adequately investigated in literature.

Cohesive Subgraph Mining. Retrieving cohesive subgraphs
on static networks is to seek subgraphs such that the vertices
in the subgraph are connected densely, which has been well
investigated in past decades [11]. Notable models include
densest subgraph [23], [24], clique [25], [26], quasi-clique [27],
[28], k-truss [29], [30], k-core [15], [31], andmore. For example,
Epasto et al. [23] studied densest subgraph on large and highly
dynamic networks, where the edges are deleted uniformly
and added adversely. Yuan et al. [25] investigated diversified
cliques problem, which is to identify k maximal cliques so as
to maximize vertex coverage. Boden et al. [27] investigated
g-quasi-clique on multi-layer attributed graphs. Zhang et al.
[29] adopted the k-truss to model the engagement and tie
strength of social networks, and investigated the anchored
k-truss problem that is to preventing network unraveling by
fixed some critical users. Themodel of k-core [15] is the closest
to our work. The core decomposition has beenwidely investi-
gated [31] with the applications in social networks, visualiza-
tion, software engineering, and so forth. Furthermore,
cohesive subgraphs are also central to many high-impact
applications, including user engagement [18], influence eval-
uation [19] and community search [17].

Temporal Graph Analyzing. Temporal graph analysis has
recently emerged as an important research filed ranging from
computer science and bioscience to physics and mathematics
[1], [2], [3]. In the literature, some classical graph analysis
problems have been extended to temporal graphs, such as
reachability and shortest path queries [4], [5], motifs mining
[8] and minimum spanning tree [32]. Our work is also related
to temporal cohesive subgraph mining, which has been dis-
cussed with different disciplines [6], [7], [10], [12], [14], [20],

TABLE 4
Effectiveness ofKcore,DivClique, TDense, Pcore, andDLCP

Lkml Enron Last DBLP Wiki Epin

AB Kcore 10�4 10�5 0.11 10�7 10�5 10�4

DivClique 0.01 0.03 0.74 10�3 0.48 0.35
TDense 0.68 0.23 0.85 0.15 0.59 0.63
Pcore 0.02 0.01 0.34 10�2 0.23 0.19
DLCP 0.48 0.07 0.77 0.01 0.34 0.51

ATC Kcore 0.40 0.61 1 0.63 0.96 0.86
DivClique 0.99 0.98 0.97 0.85 0.99 0.94
TDense 0.93 0.85 0.96 0.72 0.87 0.89
Pcore 0.82 0.69 0.61 0.68 0.98 0.89
DLCP 0.76 0.60 0.56 0.56 0.67 0.74

The best result in each model is highlighted in bold.

Fig. 9. Effectiveness ofDLCP with varying parameters on Epin.

Fig. 10. Case study on DBLP.
2. We do not visualize this cohesive subgraph due to it is too large to

show in a figure
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[33]. For example, [12]modeled a dense temporal subgraph so
as tomaximize the sum of edgeweights from a special tempo-
ral graph with unchanged topology but changing edge
weights over time. Li et al. [10] explored persistent communi-
ties, a k-core structure in any u-length subinterval during a
given interval. Chu et al. [14] studied burst communities,
where the community aggregates its average degree at the
fastest speed. Galimberti et al. [33] proposed the span-core
model for core decomposition on temporal graphs. Qin
et al. [6] proposed an interesting temporal model, called
periodic cliques, for characterizing the periodic behavior of
cohesive subgraphs. Yang et al. [20] investigated the diversi-
fied g-denses on temporal graphs and devised a divide-
and-conquer algorithm framework with some powerful
pruning strategies. g-dense maintains a g-quasi-clique struc-
ture in any timestamp in a given time interval, but their inter-
link structures may be different from one timestamp to
another. Thus, the g-dense cannot model the lasting of a cohe-
sive subgraph. Rozenshtein et al. [7] extended the traditional
densest subgraph [23], [24] to temporal networks for model-
ing the timelines of events. Specifically, they split the whole
time domain into k non-overlapping intervals, such that the
intervals span subgraphswithmaximum total density. Again,
their method also cannot capture the lasting of a cohesive
subgraph. Unlike these literatures, our work is to study the
diversification and lasting of cohesive subgraphs on temporal
networks.

Lasting Pattern Discovering. To our knowledge, there are
only few studies on lasting patterns [34], [35], [36], [37]. In
spatio-temporal networks, convoy pattern (e.g., a group of
people moving together for at least s consecutive time-
stamps) can be regraded as a lasting pattern [37]. In dynamic
sensor networks, the lasting connected component can serve
as a backbone for convenient message transmission [35].
Ahmed et al. [34] proposed a stable subgraph model such
that the detected subgraph is unchanged during a certain
time period. However, their work did not consider the cohe-
siveness of the stable subgraph. So, Liu et al. [36] devised a
stochastic algorithm framework to extract a single cohesive
subgraph on dynamic networks such that the subgraph has
the highest accumulated density and long-lasting. Although
the model is similar to our lasting ðk; sÞ-core, it is a probabi-
listic subgraphmodel that characterizes the edge appearance
with probability in a dynamic network. It extracted only a
cohesive subgraph (i.e., it did not consider the diversification
of results). Consequently, these approaches cannot directly
detect diversified top-r lasting ðk; sÞ-cores.

Diversified Top-r Searching. The goal of this problem is
to identify the top-r results that are most related to user-
initiated queries in consideration of diversity [38]. In litera-
ture, some specific problems have been studied, such as
skyline query [39], keyword search [40], document retrieval
[41], [42], pattern matching [43], ranking [44], maximal
clique [45], coherent core [46] and ðk; rÞ-core [47] by
taking diversification into consideration. However, these
approaches only consider the structure or keyword but the
temporal nature of a subgraph. Moreover, it is not clear
how the techniques can be applied to solve our proposed
diversified top-r lasting ðk; sÞ-cores. Thus, to the best of our
knowledge, we are the first to combine lasting pattern into
diversified top-r searching.

7 CONCLUSION AND FUTURE WORK

In this paper, we are the first to systematically propose a
novel diversified top-r lasting ðk; sÞ-cores to model both the
diversification and the time duration of cohesive subgraphs
on temporal graphs. And then we demonstrate that our
problem is NP-hard. Subsequently, a greedy algorithm
GreLC with ð1� 1=eÞ approximation ratio and a DFS-based
search algorithm TopLC with 1=4 approximation ratio are
proposed to effectively tackle our problem. Finally, our com-
prehensive experiments illustrate the efficiency, scalability
and effectiveness of our solutions.

There are some interesting further directions. (1) Adopt-
ing others possible models (e.g., clique, k-truss or densest
subgraph) to model the lasting cohesive subgraph on tem-
poral graphs. (2) Considering online temporal cohesive sub-
graph search problem on big temporal networks, which is
more personalized by inputting given query seeds.
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